

Repeated Constructive Interaction for Sustainable Understanding in College Classroom

Naomi Miyake & Hajime Shirouzu, with Chukyo Learning Science Group

Dr. Lauren Resnick

For advanced media soci

- Hiroshi Azuma & Giyoo Hatano send their warmest regards to Lauren, Bob, and everyone who know them.
- Once she visited Japan, ...
- Once I tried to visit her at LRDC, ...

The very long term goal of my research

For advanced media soe

- Teach cognitive science to
 - solve problems better,
 - -learn better,
 - make intellectual judgments better
- Not only in school, but in everyday life

Research goals

 Design a set of courses to teach cognitive science
Through collaborative learning, so that the participants learn how to learn collaboratively in the future, when learning becomes necessary

Outline

- Design of the collaborative course
 Dynamic jigsaw
- Outcomes
 - Learning outcome six months after the course
 - Change of discourse within a semester
- Dialogue data to show how the learning progresses during this course

Two cautions

- This is a very preliminary report
 - JST support for 2000-2004
 - Continuation for 2005-2007
- This study does not have a control condition for comparison
 - Create a course, based on what we know about collaborative learning
 - Observe and collect data as the course develops
 - Find patterns of success and feedback the findings into design

Learning objectives

For advanced media soe

- Understand some basic characteristics of cognitive processes,
- Abstract them into a "portable" chunk of knowledge (or wisdom about how human mind works and how to know it),
- So that one can apply that knowledge in everyday situations.
 - Knowledge has to be restructured in their own words
 - Knowledge has to be kept for a long time

For advanced participation of Stepwise goals of learning activities

- 1) Understand one research finding by reading a text to be able to explain its main points, with its logical or evidential support.
- 2) Combine this understanding with other research findings to form a chunk, so that one can apply this wisdom when necessary.
- 3) Repeat this and gradually increase the number of research findings to cover.

Dynamic jigsaw

- Jigsaw as a tool for collaborative reflection.
- Combine this to cover 20 to 30 research findings.

- Effective collaborative learning assumes each participant has
 - an initial idea or ideas,
 - a means for externalizing such ideas for reflection, and
 - chances to "monitor" the different ideas from a slightly abstract viewpoint
- Jigsaw can be devised to fulfill these assumptions.

Dynamic jigsaw as a scheme

For advanced media soci

Among N pieces of literature (n1...N),

- Select one, ni, to take charge of it.
- Become expert of ni.
- Exchange and seek integration of ni and ni+1.
- Exchange and seek integration of $n_{i+n_{i+1}}$ and $m_{i+m_{i+1}} (2X2)$.
- Exchange and seek integration of ni+ni+1 + mi+ mi+1 and other four (4X4).
- ...
- Write a summary of n1 to N, including ni.

Scale of our study

For advanced media socie

JST CREST: 2000-2004; SORST: 2005-2007

- Two 90 min. classes per semester
- Four semesters for the first two years of college
- Dynamic jigsaw is for the sophomores.
- Seventy students per year on average
- Data collection since 2000
- Serious data collection since 2003

Classes under study

For advanced metja cocjety

	Admitted in 2001	Admitted in 2002	Admitted in 2003	Admitted in 2004
Spring 2001	Orientation to CogSci			
Fall 2001	CogSci Method 1			
Spring 2002	CogSci Method 2	Orientation to CogSci		
Fall 2002	CogSci 2	CogSci Method 1		
Spring 2003		CogSci Method 2	Orientation to CogSci A/B	
Fall 2003		Cogsci 2	Introduction to Cog\$ci A/B	
Spring 2004			Medium CogSci CogSc Method 1	Orientation to CogSci A/B
Fall 2004			Advanced CogSci CogSci Method 2	Introduction to CogSci A/B

Freshmen Spring & Fall

Concept Mapping tool for sharing externalizations

Data collection of classes

Student answers

Outcomes and dialogues

For advanced media soe

- 1) Retrospective interview four to six months after the completion of the two-year course
- 2) Class dialogue data of the dynamic jigsaw (2004)

Remembering "a lecture"

5 months later

EXP: What do you remember? ST: ... uhh, he talked about meta-cognition, and uhh, he talked about the baseball player, Ichiro, and, and ...that's all."

For advanced media soci

Class type	# of targets	% recall Facts + Implication	% recall Keywords
Lectures	11	2.2%	56.1%

Remembering "a lecture"

5 months later

" (What did you remember?) ... uhh, he talks about metacognition, and uhh, he talks about the baseball player, Ichiro, and, and ...nothing."

For advanced media society

Class type	# of targets	% recall Facts + Implication	% recall Keywords
Lectures	11	2.2%	56.1%

Remembering from jigsaw

For advanced media so

EXP: What did you read? What kind of a story? ST: Okay. It was about an experiment of pigeon's memory. If we destroy a particular part of her brain, it can still distinguish the edible things from the non-edible, but cannot tell a triangle from other figures. So, the functions needed for living are distributed among different parts of the brain, even pigeon's brain" 4 months later

Class type	# of targets	% recall Facts + Implication	% recall Keywords
Lectures	11	2.2%	56.1%
Jigsaw	22	15.8%	7.7%

Remembering from jigsaw

For advanced media so

EXP: What did you read? What kind of a story? ST: Okay. It was about an experiment of pigeon's memory. If we destroy a particular part of her brain, it can still distinguish the edible things from the non-edible, but cannot tell a triangle from other figures. So, the functions needed for living are distributed among different parts of the brain, even pigeon's brain" 4 months later

Class type	# of targets	% recall Facts + Implication	% recall Keywords
Lectures	11	2.2%	56.1%
Jigsaw	22	15.8%	7.7%

2) Class dialogue data of the dynamic jigsaw

Target class of dialogue analyses

	Admitted in 2001	Admitted in 2002	Admitted in 2003	Admitted in 2004
Spring	Orientation			
2001	to CogSci			
Fall	CogSci			
2001	Method 1			
Spring	CogSci	Orientation		
2002	Method 2	to CogSci		
Fall	CogSci 2	CogSci		
2002		Method 1		
Spring		CogSci	Orientation to	
2003		Method 2	CogSci A/B	
Fall		Cogsci 2	Introduction to	
2003			CogSci A/B	
Spring			Medium CogSci	Orientation to
2004			CogSci Method 1	CogSci A/B
Fall		7	Advanced CogSci	Introduction to
2004			CogSci Method 2	CogSci A/B

"Advanced Cognitive Science" 2004

For advanced media soe

- Seventy-five sophomores
- Fifteen classes of 90 min/week (except for the last two weeks)
- September to December
- The students have studied followings prior to this class
 - Problem solving (IDEAL by Bransford and Stein)
 - Memory
 - Knowledge representation (semantic net notation)
 - Introductory perception
 - Theories of expertization

Learning materials

Material

- Twenty-four literature pieces

Eight on development Eight on perception and knowledge representation **Eight from problem** solving, culture and society

正如科学上最资料 2004 资料番号 04_106 子どもたちの中の心理学的な実質主義

なぜ小さい子どもたちは、「お母さんは絶対消防主にはなれないんだ」と主要するのだろうか?ま た、子どものとき内親から引き離された人たちが、大人になってからなんとかして自分の親を探そ うとするのはなぜか?きるには、熱心な美術収集家が画家のオリジナルに望外な値段をはもうのは なぜなのだろうりこれらはまったく異なった文脈で起きるばらばらな事柄にも見えるが、どれも 「心理学的本質主義」という考え方の枠組みで理解することができる。

心理学的な本質主義とは、特定のカテゴリー (例えば「ライオン」、「女性」など) が、その視底 に、直接は観察することができない本質を持つという考えである。その本質は外から見ることはで きないが、そのものがあるカテゴリに属するメンバーであることを保証する、生物学の領域で含え ば、本質とは、ある生き物が成長したり、子どもを生んだり、(オタマジャクシがカエルになるな どのように)変換したりしても、その生き物の中に存在し続ける(数)である、化学の組織で含まげ、 水が損体でも気体でも実体でも「水」であるように、ある物質が、形や大きさや状態を変えても株 り、そのものがそのものであることを保証する「覧」である。

この考えは、どこから来るのだろうか?最近の研究では、心理学的な本質主義は成長の早い時期 から見られる語知的バイアスであること提案されている。これらの研究によれば、年少の子どもは、 単調を学ぶとき、新しいカテゴリメンバーにそのカテゴリについて持っていた知識を一般化して当 てはめるとき、ものの内側に何があってどんな働きをしているのかについて推測するとき、学習し て身につけられることがらに対して生まれつき持っている性質がどんな影響をもたらすかを考え るとき、きらにはものごとの因果関係を説明するときなどさまざまな場面で、直接は見ることがで きないものの本質をつかんでいることがわかる。これらの結果からは、子どもたちが幼いときから、 謳れた、目に見えない特徴を探そうとする傾向を持っているのだと考えることができる。

本質主義はどこに現れてくるた

子どもにせよ大人にせよ人が本質主義的なものの考え方をするという証拠はどこにあるのだろ うか?Media と Ortony は、本質主義は1場所取り」だと考えればよいという。本質がなんであるか はわからないうちから、場所だけは確保しておくかのように、あるカテゴリがある本質を示す、と 決めてかかるのである。何として、子どもたちはよく、男と女の間には決定的な違いがあると信じ ているが、実際それがどのような違いなのかについてはまったく何のアイディアもない、というこ とがある。しかし、ものごとにそういった本質があると考えることによって、さまざまな推論をお こなうことができ、またそれらがどういう構造をもっているかを知ることができる。

たとえば、あいまいなカテゴリのメンバーを決定す 石時、子どもと大人がどのような手続きを使うかを? ストするために、次のような実験を行った、る歳見と 大学生に、団のような、ほとんど同じに見えるまつの もののペアを示し、これらのアイテムはいくつかのよ で違う、と告げた(例えば「一匹は大で一匹はオオカ こである) もしくは (一匹は動物でもう一匹はおもち やである:など) そして、どちらのアイテムがどち 図:実験に使用したサンプルアイテム らであるかを決めるように数示した。それから、ア

[話51科学上驗資料 2004 資料番号 04_106

For advanced media socie

イゲムの内部、起源や出身、行動、年を調べることは、答えをチェックするのに有効であるかどう かやたずわた

その結果、子どもも大人も、そのアイテムは外から見える行動だけではなく、内部の性質や起則 によっても特徴付けることができると信じていたことが示された。多歳児も大人も、貸じように、 起動や内部を調べることはまつの同じに見える動物のうち、どちらが大でどちらがオオカミである かを決める重要な手がかりとなると答えたが、彼らがではオオカミと大とで内臓がどう違うのかを 知っていたとは考えられない、彼らはいずれも、本質的に何かが見えないところで違う、というこ とだけを信じていたと思われる。

ニトピト本質主義

本質が汚からは観察できないものだとすると、人は何によってその本質をつかんだり、人に伝え たりしようとするのだろう?ものの本質について利用したり伝えたりするとき、ことばが重要な役 割を果たす.

あるカテゴリのメンバーを表現するのに使用することばが、子どもたちのそのカテゴリについて の判断に影響する、数えることのできる希知は、形容詞句や動詞句よりも、あるカテゴリが時間を 超えて安定しており、一貫性があることを意味する。例えば、ある研究では、5~7歳の子どもた ちに対して、数えられる名詞句を用いた説明 パローズは多歳です。ローズはたくさんにんじんを 食べます、彼女は「にんじん食べ屋さん」です。)) か、もしくは動詞句を用いた説明(パローズはき 曲です。ローズはたくさんにんじんを食べます。彼女はできるときはいつでもにんじんを食べま す。」)を聞かせた。その後、その子どもたちに、「ローズは大人になってもたくさんにんじんを食 べるでしょうかい「もし彼女の家族がにんじんを食べるのをやめさせようとしたら、彼女は食べる のをやめるでしょうか、」などの質問をして、このカテゴテメンバーが時間や環境の変化を超えて どのくらい安定していると思うかを調査した。結果、数えられる名詞を使った説明 ぽにんじん食 べ届きん島 を聞いた子どもたちは、鶴岡町による説明 じそうできるときはいつでもにんじんを食 べます)を聞いた子どもたちよりも、個人の特性が時間や環境を超えて安定しているだろうと判断 することが展出された

一般的な名詞句、は本質を表現する表現の化力であり、あるカテゴリが一貫していて、きまざま なことについて推論が可能であることを意味する。4歳児に新しいことがらを一般的な言い力を用 いて説明する(例えば「熊の毛皮には3つの髪があります」など)、彼らはこの表現をカテゴリメ (一のほとんどもしくは全てにあてまる典型的な事実だとして扱う、一般的な名詞は子どもたち

カテゴリの安定性を利頼していると考えられる証拠が見つかっている。あるものが「存在する () る) 」と販定するのと、「存在する(ある)かもしれない」と素種するのとでは、そのものの安定性 についての判断が異なる、ことば外の理学的な木質主要の展であるとは含まないだろうが、言語は 子どもたちがいつカテゴリを安定したものとして扱うかに開わる重要な手がかりを提供している と考えられる.

138 : Oslman, S.A. (2004 Psychological econtralium in children, 77CS S pp-404-409, 3381025

The dynamic jigsaw for Y.O.

	19/Oct	Select 116 of (115, 116)
	26/Oct	Answer quiz on 116, 115
	02/Nov	Practice explaining 116 to TA
	09/Nov	Practice explaining 115 to TA
	16/Nov	1X1 115&116
	30/Nov	2X2 (115,116)&(113,114)
	07/Dec	Reflection on 2X2
	08/Dec	4X4 (113-116)&(109-112)
	14/Dec	8X8 (109-116)&(117-124)
	15/Dec	8X8 (109-116)&(101-108)
T&D_050	508 22/Dec	Free jigsaw 20

Length of explanations of 116

Y.O.

For advanced media control Component structure of the explanations

Theme	The theme of the findings
Evidence	Experiments, observations, systems, line of logic
Implications	Author's interpretations and implications
Connections	Student's interpretations and abstractions

Emerging pattern

- Y.O. gives more concise explanation towards the end.
- The dynamic jigsaw activity requires him to
 - take a close look at the text
 - get help for deeper reading from TA's
 - shorten his explanation to the limit in 8X8
 - re-organize evidence to select and elaborate one's easiest for him to explain
 - answer similar questions to select focus
 - clarify his explanation for understanding through discussions and confusions during exchanges.

For advanced by Solution What are 113, 4, 5, & 6?

113	ELIZA & Doctor; do we need process to achieve AI?
114	BUGGY: system and how it was used for teachers
115	BROOKS: modality interference
116	Declarative vs. procedural knowledge

16/Nov: While checking their notes, his partner voices a question about the text.

646	NT	We have written that knowledge gets transformed from declarative to procedural. Is this final?
649-655	YO	Yes, we finalized itah maybe, we can put it as a last comment.
666-675	NT	We have talked from declarative to procedural transformation rather extensively. But couldn't it be reversed, like the other way around? Is this actually related to automatization? I don't understand.
686-687	YO	We don't have good examples of autmatization, yeah.

For advanced media society

30/Nov -1: After the pair exchanged their practice explanations, YO develops his own interpretation

441-445	YO	I just thought we might not use procedural knowledge intentionally, but to be conscious about it is, maybe, cognitive science
446	TN	Ah
447-448	YO	So, those human behavior is difficult to explain,
449-450	KT	but we make them explainable in words.
451-464	YO	Let me try again, cognitive science is a process of transforming procedural knowledge into declarative knowledge. How's that?

30/Nov-2 : Exchanging explanations leads into further confusion

896-902	ΤY	113 says that there have been two sects of AI. Colby thinks the outputs are important, but Weisenbaum thinks about the algorithms in order to make an AI sysmte human-like.
		<exchange 114,="" 115="" 116,="" and="" make="" relations="" then=""></exchange>
1376-90	ΤY	So, Colby's AI is procedural, because it depends on pattern matching, while Weisenbaum's is declarative because it aims at describing the internal?
1391- 1401	YO	Uhm, I thought it was the other way around. Weisenbaum puts both types of knowledge into AI, but Colby uses only the declarative knowledge. But I think you might be right

7/Dec In 4x4, he clarifies his viewpoint

518-520	YO	It's strange to say that pattern matching cannot be used to mimic human intelligence. It doesn't mimic how humans use knowledge or the situation.
548-564	AW	Buggy mimics human errors. So it's similar to pattern matching.
574-575	YO	If Buggy is a pattern matching system, then it's the same as what Colby does.
578-579	AW	It's based on rules of how children make errors, based on thousands cases.
601-604	YO	Then the way Buggy makes mistakes is the same as children make mistakes, then Buggy has some mechanism of making mistakes. That's why this is useful for learning.
608-622	AW	No, no, no. Buggy just mimics childrenWe should read 114.
627 T&D_050508	YO	If that's the reason, Buggy is like Colby.

15/Dec : He confirms his view when he gives a shorter, more concise explanation.

	YO	< while explaining 109~116 >
1298- 1302	YO	In 113, the surface is declarative knowledge, and the inside is procedural knowledge, and if you want to make an AI system, you need to know the procedural knowledge.
1322	KM	I can't relate this 114 to others.
1323- 1333	YO	We can think of 114 as a trial to implement the procedural knowledge into AI, and its implication is that externalizing the procedural knowledge does something good.

22/Dec : A "novice" audience helps voicing

1403-07	YO	114 says that externalization makes the internal processes visible, and
1408	KT	Yeah
1408-13	YO	For example, when you teach arithmetic to a child and he makes an error, you might not be able to find why. But by externalizing the cognitive model you can, you can
1414	KT	I see, I see,
1415	YO	uh, how should I say it?
1416	KT	we can know what happens in the head of a child and causes an error.
1417-27	YO	Yes, yes, yes, yes. That's the proof that it (=externalizing the cognitive model) is useful.

For advanced methanics Constructive interaction and dynamic jigsaw

- Monitor provides a slightly more abstract perspective to help each to generalize the experience.
- The dynamic jigsaw facilitates the role of the monitor, which helps clarify the essence of explanations
- The activity structure enforces the explanations to be concise, so that they could be "portable."

We continue...

- Establish cases where students learn, and identify successful and unsuccessful learning activities.
- Establish a microgenetic process of this level of knowledge construction
- Find matches between activity types and student achievements.
- Propose a new structure for college education to accommodate future needs.